A new reproducing kernel method for solving Volterra integro-dierential equations

نویسنده

  • Razieh Ketabchi Department of Mathematics, Mobarakeh Branch, Islamic Azad University, Esfahan, Iran
چکیده مقاله:

This paper is concerned with a technique for solving Volterra integro-dierential equationsin the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernelmethod, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series. An iterative method is given toobtain the approximate solution. The convergence analysis is established theoretically. Theapplicability of the iterative method is demonstrated by testing some various examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new technique for solving Fredholm integro-differential equations using the reproducing kernel method

This paper is concerned with a technique for solving Fredholm integro-dierentialequations in the reproducing kernel Hilbert space. In contrast with the conventionalreproducing kernel method, the Gram-Schmidt process is omitted hereand satisfactory results are obtained. The analytical solution is represented inthe form of series. An iterative method is given to obtain the approximate solution.Th...

متن کامل

A New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel ‎Method

This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...

متن کامل

The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations

In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...

متن کامل

the combined reproducing kernel method and taylor series for solving nonlinear volterra-fredholm integro-differential equations

in this letter, the numerical scheme of nonlinear volterra-fredholm integro-differential equations is proposed in a reproducing kernel hilbert space (rkhs). the method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satis ed. the nonlinear terms are replaced by its taylor series. in this technique, the nonlinear volterra-fredholm integr...

متن کامل

a new approach for solving volterra integral equations using the reproducing kernel ‎method

this paper is concerned with a technique for solving volterra integral equations in the reproducing kernel hilbert space. in contrast with the conventional reproducing kernel method, the gram-schmidt process is omitted here and satisfactory results are obtained.the analytical solution is represented in the form of series.an iterative method is given to obtain the approximate solution.the conver...

متن کامل

A New Approach for Solving Volterra Integral Equations Using the Reproducing Kernel Method

This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method,the Gram-Schmidt process is omitted here and satisfactory results are obtained. The analytical solution is represented in the form of series. An iterative method is given to obtain the approximate solution. The conv...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 13  شماره 2

صفحات  1- 17

تاریخ انتشار 2019-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023